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Example 
 

A panel study of health in Copenhagen County with 
data collected at ages 40, 45, 51 and 60. 
 

Sickness behaviour: 
- Number of weeks being unable to take care of 

responsibilities 
 

Self-reported health: 
- Overall evaluation 
- Tiredness, Headache, Stomach pains, Bronchitis 

 

Clinical results:  BMI & Blood pressure 

 
Social habits: Smoking, Alcohol consumption and Physical Activity 

 

Social problems: Work, Economy, House, Family, Personal 

 

Socio-demographic variables: Marital Status, Social Class, Sex 

 

The problem : 

 What are the causal factors shaping SRH?



The example: Analysis of data from the 60-year Glostrup survey 

The chain graph model 
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Partial Gamma coefficients measuring the strength of the association 

4 



Gamma coefficients 
 

Rank correlations for dichotomous and 
ordinal categorical variables.  

 

Similar to Kendal’s rank correlation 

 

The gamma coefficient for 2×2 tables is a 
function of the odds ratio 
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Partial γ coefficients are weighted means of 

γ coefficients in different strata of 

multivariate tables  

(similar to the MH estimate)
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Recursive models 
 

Random variables : A, B, C 

Nonrandom design variables : K 

 

The joint conditional distribution 
 

P(A,B,C|K) 
 

may be rewritten as a product of conditional 

distribution in several different ways: 

 

P(A,B,C|K) = P(A|B,C,K) P(B|C,K) P(C|K)  

P(A,B,C|K) = P(B|A,C,K) P(A|C,K) P(C|K) 

P(A,B,C|K) = P(B|C,A,K) P(C|A,K) P(A|K)  

• • • 

P(A,B,C|K) = P(C|B,A,K) P(B|A,K) P(A|K) 
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A recursive model is a model where the order of 

the variables has substantial meaning. 

 

C ← A ← B  ← K 

⇔ 

P(A,B,C,D|K) = P(C|A,B,K) P(A|B,K) P(D|B,K) 

P(B|K) 

 

Block-recursive models are recursive models 

where A, B and/or C are multidimensional 

vectors that cannot be partitioned in any 

meaningful way. 
 

The models are called DAGs  

if A,B, and C are univariate. 

 

DAG = Directed Acyclic Graph 
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Recursive modelling fits regression models 

to each of the separate factors of the model. 

 

Conventional epidemiological models are 

recursive: 

 

 

P(Outcomes,Exposures,Confounders) 

= 

P(Outcomes|Exp,Conf)P(Exp|Conf) P(Conf) 
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Initial causal framework for the analysis of the 
Glostrup data on self-reported health 

Absence from responsibilities

Self reported Health

Symptoms

Clinical findings 

Social problems Social habits 

Social Class

Education

Sex
 

What are the causal factors influencing SRH? 
Can the analysis support causal claims? 

 
What kind of statistical model should we use? 
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Graphical models 
 
 

Three different types of graphical models: 

 

1) Conventional graphical models of joint 

distributions where all variables are assumed 

to be on the same footing. (Symmetrical 

relationships). 

 

2) Graphical regression models distinguishing 

between dependent variables and independent 

explanatory variables. 

 

3) Chain graph models are block recursive 

graphical models with variables in a series of 

recursive blocks and where each component is 

a graphical regression model). 
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Graphical models for symmetrical 

relationships 
 

The joint distribution of a multivariate set of variables 
  

Definition 1.  

A graphical model is defined by a set of assumptions 

stating that certain pairs of variables are conditionally 

independent given the remaining variables of the model. 
 

We write X╨Y  when X and Y are assumed to be 

independent and X╨Y |Z when X and Y are conditional 

independent given Z in the sense that  
 

P(X,Y|Z) = P(X|Z)P(Y|Z) 
 

or equivalently 

 

P(X|Y,Z) = P(X|Z). 
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Example 1. 
 

The following four assumptions define a graphical 

model for variables A, B, C, D, E and F: 

 

              A╨C |B,D,E,F     A╨F |B,C,D,E 
              B╨D |A,C,E,F     D╨F |A,B,C,E 
 

The model is called a graphical model because the 

assumptions of conditional independence are encoded in 

a mathematical graph, a set of nodes and edges between 

nodes, as shown below. 

 
 

A missing edge in the graph means that we assume that 
the variables are conditionally indepedent 
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Graphs defining graphical models are called 

independence graphs, interaction graphs or 

Markov graphs. 

 

Markov graphs are second order mathematical 

models with properties corresponding to properties 

of the statistical model.  
 

 

The 
real 

world 
P(X) 

 
⇒ : Modelling      ← : Inference and interpretation 
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The main properties of Markov graphs for discrete 

data can be summarised in the following way: 

 

a) Graphical models are closed under marginaliz-

ation and conditioning. Marginal and condit-

ional models may be derived from the graph 

 

b) Graphical models for discrete variables are 

loglinear with generators defined by the Markov 

graph 

 

c) Global Markov properties: Separation implies 

conditional independence 

 

d) Separation implies parametric collapsibility 

 

e) Decomposition implies collapsibility of results 

from likelihood inference 
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Marginalizing over variables of a graphical model 

always leads to a new graphical model. Some 

unconnected variables will be connected in the 

independence graph of the marginal model. 
  

 
P(B,C,D,E,F) 

 
The conditional distribution of a subset, of the variables 
given the remaining variables will be a graphical model.  
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Let V be the complete set of variables of the model 

and V1 ⊂ V. 

 

The independence graph of P(V1 | V\V1) is equal to 

the subgraph of V1. 

 
                                    

P(A,B,C,D,E|F) 
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Graphical models for discrete data are loglinear 
 

The loglinear generators correspond to the 

cliques of the independence graphs. 
 

 
Cliques/Generators: ABE, ADE, CDE, BCEF. 
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Properties of loglinear models 
 

The strength of association is measured by 
matrices of log-odds ratios which, given the 
appropriate parameterization1, correspond to the 
parameters of the model. 
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The AB- association 

 A=1 A=2 A=3 

B=1 0 0 0 

B=2 0 22
ABλ  32

ABλ  

B=3 0 23
ABλ  33

ABλ  

 

Exp( AB
ijλ ) = log-odds-ratio in the conditional distribution 

P(A,B | C,D,E,F,A∈{0,i},B∈{0,j}) 

 

                                                 
1 λabcd = 0 if a=1, b=1, c=1 and/or d=1 

 18



Three-factor association implies that the strength 

of association depends on other variables 
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The CE – association given F=f 
 C=1 C=2 C=3 

E=1 0 0 0 

E=2 0 22 22
CE CEF

fλ λ+  32 32
CE CEF

fλ λ+  

E=3 0 23 23
CE CEF

fλ λ+  33 33
CE CEF

fλ λ+  
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Conditioning in loglinear models 
 

Conditioning leads to a loglinear regression model 

where the parameters describing the parameters 

relating to the dependent variables are the same as in 

the unconditional distribution: 
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Generators(AB|CDEF): ABE,ADE,BCEF
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Inference in conditional loglinear model 
 

The conditional loglinear model of P(A,B|CDEF) given 

by ABE,ADE,BCEF  

and the unconditional loglinear model of given by  

ABE,ADE,BCEF,CDEF 

are inferentially equivalent: 

 

Maximum likelihood estimates and likelihood ratio tests 

of hypotheses concerning parameters relating to A and 

B are always the same in the conditional and 

unconditional model. 

 

Estimates and tests may differ from thos obtained from 

the original ABE,ADE,CDE,BCEF model 
 

If A is dichotomous then the parameters of the logistic 

regression model, P(A|BCDEF) may be estimated and 

tested in the loglinear ABE,ADE,BCDEF model. 
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“Confounding” and “effect modification” in 

loglinear models 

 
Marginalization over one or more variables of a 

loglinear model always leads to a new loglinear model.  

 

If the strength of the association between two variables 

in the marginal model is different from the strength in 

the complete model, then the measure of association 

obtained by analysis of the marginal model is 

confounded by the variables not included in the model. 

 

The association between two variables is not confounded 

by a third variable if the loglinear parameters relating 

to the two variables are the same in the complete and 

the marginal table without the third variable. 

 

Confounding, as defined here, is a property of the 

model, not a property of the estimates. 
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“Effect modification” in loglinear models 
 

The strength of the association between two variables is 

modified by a third variable if the strength depends on 

the outcome of the third variable. 

 

Effect modification ⇔ Higher order interaction 

 

If the association between two variables are modified by 

a third variable, then marginalization over the third 

variable leads to confounding since analysis of the table 

without the confounder cannot provide information on 

the degree of effect modification. 

 

Effect modification ⇒ Confounding 
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No confounding ⇔ Parametric collapsibility 

 

The inferential problem: 

 

Under what conditions can we be sure that 

there is no confounding? 

 

The answer to this question is given by the 

graphical structure of loglinear models.
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Graphical models for discrete data are 

loglinear 
 

 

 

Cliques/Generators: ABE, ADE, CDE, BCEF.  
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A graphical model always assumes that higher order 

interactions are present (effect modification) if there 

are cliques with more than two nodes in the graph!
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Separation of nodes in graphs 

 
Two subsets of variables, U and V, are separated by a 

third subset if all paths from a variable in U to a 

variable in V goes through one or more variables in W.  

 

The separation theorem (global Markov properties): 

Separation implies conditional independence: If W 

separates U and V in the graph then U ╨ V | W.  

 
D and F are separated by both (A,E,C) and (B,C,E). 

 

D ╨ F | A,E,C and D ╨ F | B,C,E. 
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Separation implies parametric collapsibility in 

loglinear models. 
 

If all indirect paths between two variables, X 

and Y, move through at least one variable in a 

separating subset, S. 

 

⇒ 

 

All parameters pertaining to X and Y are the 

same in the complete model and in the 

marginal model, P(X,Y,S).  
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The loglinear association parameters relating 

to A and D is the same in the complete 

P(A,B,C,D,E,F) model and in the marginal 

models of P(A,D,B,E) and P(A,D,C,E) because 

(B,E) and (C,E) both separate A and D if there 

is no direct connection between these two 

variables.  

 

Estimation of AD parameters in ADBE and 

ADCE is therefore not “confounded”. 
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Marginal models sometimes have a simpler 
parametric structure than implied by the 

marginal graphical model. 
 

 
 

The graphical model for P(A,D,B,E) is saturated. 
 

Parametric collapsibility implies that the ADC-

parameters are constant across different levels of B and 

C not only in the complete model, but also in the 

marginal model.  

 

Therefore, P(A,D,B,E) is loglinear with generators: 

ADE,ABE,DEB.  
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Decomposition by separation of complete subsets 
leads to factorizations of statistical models 

implying collapsibility in terms of likelihood 
inference for certain types of models. 

 

 
 

The BEC clique separates (A,D) from F implying that (A,D) 

and F are conditional independent given (B,C,E). The joint 

distribution can therefore be written as 
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 Graphical regression models 
 

A graphical regression model is a multidimensional 

multiple regression model, P(Y | X) where Y = (Y1,..,Yr), 

and X =  (X1,..,Xs) defined by assumptions concerning 

conditional independence between two dependent variables 

or one dependent and one independent variables, 
 

Yi ╨ Yj | Y1,..,Yi-1,Yi+1,..,Yj-1,Yj+1, .,Yr,X1,..,Xs 

Yi ╨ Xj | Y1,..,Yi-1,Yi+1,..,Yr,X1,..,Xj-1,Xj+1,..,Xs 

 
A Markov graph for a graphical regression model of 

P(a,c,h|b,d,e,f,g). Edges between explanatory variables have 
been fixed 
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Graphical regression models are log linear with 

collapsibility properties defined by the Markov 

graphs in exactly the same way as for graphical 

models for symmetrical relationships. 
 

 

Loglinear model: (abdefg),(acefg),(bdh) 
 

Separation:    A ⊥ H | DB 

 

Collapsibility onto the ACEFG table with respect to the 
measure of effect of F on C in terms of both parameters and 

estimates. 

 32



Chain graph models 
 
 

Two sets of assumptions 

 

1) Recursive structure, 
1

1
1

( ) ( | , .., ) ( )
r

i i r rP V P U U U P
−

+= ⋅∏ U  

2) Cond. Ind. assumptions defining graphical 

regression models, P(Ui | Ui+1,..,Ur) 

 

Chain graph models are characterized by Markov 

graphs where variables in at different recursive 

levels are connected by arrows instead of 

undirected edges. 

 

Properties of chain graph models are most easily 

found by analysis of the Markov graphs of the 

separate regression components. 
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Recursive structure:  

 P(a,b,c,d,e,f,g,h) = P(a,g,h | d,b,e,f,g) · P(d | b,e,f,g) · P(b,e,f,g)  

 

Conditional independence at Level 1: 

 a ╨ h | b,c,d,e,f,g    c ╨ b | a,d,e,f,g,h   c ╨ d | a,b,e,f,g,h    

      c ╨ h | a,b,d,e,f,g  h ╨ e | a,b,c,d,f,g    h ╨ f | a,b,c,d,e,g 

 h ╨ g | a,b,c,d,e,f 

 

Conditional independence at Level 2:  d ╨ f | b,e,g 

 

Conditional independence at Level 3: b ╨ e | f,g 
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The regression graphs 
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Graphical modelling 
 

An idealized overall strategy 

 

1) An initial analysis of data (screening) aimed at 
formulation of a complete base model that you 
may use as a starting point for your analysis. 

 

2) Further specification and simplification of this 
model using appropriate exploratory model search 
strategies. 

 

The above two steps should only address secondary 

problems of model building. 

 

3) The definitive analysis aimed at the substantive 
research problems and formulation of conclusions. 
This is not - except in special cases - something 
that you should approach in an exploratory 
manner. 
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Remember that: 

 

A graphical model always assumes that higher 

order interactions are present (effect 

modification) if there are cliques with more than 

two nodes in the graph. 

 

Tests of vanishing higher order interactions 

(confounding rather than effect modification) 

can therefore not be addressed within the 

framework of conventional graphical models.  

 

The final analysis therefore has to be in terms of 

loglinear rather than graphical models. 

 

Graphical modelling is the initial step of high-

dimensional loglinear modelling. 



The example: Analysis of data from the 60-year Glostrup survey 

The graphical model 
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Partial Gamma coefficient measuring the strength of the association 
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partial gamma >0.35 
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Partial gamma > 0.25 
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The loglinear structure 
 

LEVEL 1: (ABEL),(BCDEFGHIJKLMNOP) 
LEVEL 2: (BCDLM),(CDEFGHIJKLMNOP) 
LEVEL 3: (CKLN),(DIKN),(EIMN),(CEN),(EF),(FL),(GHIJKLMNOP) 
LEVEL 4: (HJMP),(GHP),(GIP),(IJKLMNOP) 
LEVEL 5: (IJMNOP),(LNOP),(IKP) 
LEVEL 6: (MOP),(NP) 
LEVEL 7: (OP) 
LEVEL 8: (P) 

 
Loglinear models may be fitted but degrees of freedom are not to 

be trusted and the deviance in (very) large and (very) sparse 

tables is not chi-square distributed, anyway. 
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Analyses of relationships 
 

1) Collapse on marginal tables with parametric collapsibility on the 

parameter of interest. 

 

2) The graphical model assumes that higher order interactions are 

present. Eliminate higher order interaction terms if at all 

possible. 

 

3) Calculate partial gamma coefficients in fitted tables to describe 

the strength of association among ordinal variables. 
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Factors with direct effect on Self Reported Health (B) according to the 

model: 

 

C: Tiredness,  

D: Bronchitis,  

L: Problems  

M: Social class. 
 

The model collapses on the 5-dimensional table with these variables. 

 

The marginal graphical model is saturated. 

 

To which degree is the effect of these variables modified by each other?
 44



The Tiredness – SRH association 

 

The marginal association: 
 

 

     + Tired60 
     | | B:---SRH60              | 
     C | veryg  good  fair   bad | TOTAL | 
-------+-------------------------+-------+ 
   yes |     4    98    78     8 |   188 | 
   row%|   2.1  52.1  41.5   4.3 | 100.0 | 
    no |    46   387    43     2 |   478 | 
   row%|   9.6  81.0   9.0   0.4 | 100.0 |  X² = 117.1 
-----------------------------------------+  df =   3 
 TOTAL |    50   485   121    10 |   666 |   p = 0.000 
   row%|   7.5  72.8  18.2   1.5 | 100.0 | Gam = -0.74 
-----------------------------------------+   p = 0.000 
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Test of conditional independence given Bronchitis, Problems and Social Class 

 
 
-------------------------------------------------------------------------------------- 
                         p-values                 p-values (1-sided) 
Hypothesis       X²  df asymp exact 99% conf.int. Gamma asymp exact 99% conf.int. nsim 
-------------------------------------------------------------------------------------- 
 1:B&C|DLM    113.9  35 0.000 0.000 0.000 - 0.016 -0.81 0.000 0.000 0.000 - 0.016  400  
-------------------------------------------------------------------------------------- 

 

Strong evidence of conditional association. 
 

The conditional association as measured by the partial gamma 

coefficient is stronger than the marginal. 

 

To which degree is the association modified by DLM? 

 46



Partial gamma coefficients in strata defined by Problems 
----------------------------------------------------------- 
** Local testresults for strata defined by   PROB60 (L) ** 
                          p-values      p-values (1-sided) 
 L:   PROB60   X²    df asympt  exact  Gamma asympt  exact 
----------------------------------------------------------- 
 1: few   0  81.31   15 0.0000 0.0000  -0.85 0.0000 0.0000 
 2: some  1  25.83   10 0.0040 0.0025  -0.85 0.0000 0.0000 
 3: many  2   6.81   10 0.7431 1.0000   0.27 0.2009 0.1800 
----------------------------------------------------------- 

No evidence of association for person with many problems 
 
L:   PROB60  Gamma variance     s.e. weight  residual 
----------------------------------------------------- 
 1:       0  -0.85   0.0069   0.0832  0.503  -0.699 
 2:       1  -0.85   0.0075   0.0869  0.461  -0.585 
 3:       2   0.27   0.0993   0.3152  0.035   3.485 
----------------------------------------------------- 

Test for partial association: X² =   12.1 df = 2 p =  0.002 

Significant evidence of effect modification 
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“Epidemiological” summary: 
 
Summary of analysis of conditional relationship between 
SRH60 and Tired60 
 
 D:BRONKI60     Potential modificator - no evidence    
 L:  PROB60     Potential modificator - evidence found 
 M: SOCKL51     Potential modificator - no evidence    
 
 
Summary statistics 
 
Marginal Gamma (all cases)        = -0.74   n =    666 
Marginal Gamma (missing excluded) = -0.71   n =    538 
Partial Gamma                     = -0.81  df =     35 
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The effect of Bronchitis: 

 
Summary of analysis of conditional relationship between 
SRH60 and BRONKI60 
 
 C: Tired60     Potential modificator - no evidence    
 L:  PROB60     Potential modificator - no evidence    
 M: SOCKL51     Potential modificator - no evidence    
 
 
Summary statistics 
 
Marginal Gamma (all cases)        = -0.58   n =    612 
Marginal Gamma (missing excluded) = -0.62   n =    538 
Partial Gamma                     = -0.64  df =     33 
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The effect of Problems 

 
Summary of analysis of conditional relationship between 
SRH60 and PROB60 
 
 C: Tired60     Potential modificator - evidence found 
 D:BRONKI60     Potential modificator - no evidence    
 M: SOCKL51     Potential modificator - no evidence    
 
Global evidence of modification 
 
Summary statistics 
 
Marginal Gamma (all cases)        =  0.39   n =    628 
Marginal Gamma (missing excluded) =  0.40   n =    538 
Partial Gamma                     =  0.33  df =     65 
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The effect of Social Class 
 
Summary of analysis of conditional relationship between 
SRH60 and SOCKL51 
 
 C: Tired60     Potential modificator - no evidence    
 D:BRONKI60     Potential modificator - no evidence    
 L:  PROB60     Potential modificator - evidence found 
 
 
Summary statistics 
 
Marginal Gamma (all cases)        =  0.20   n =    660 
Marginal Gamma (missing excluded) =  0.23   n =    538 
Partial Gamma                     =  0.23  df =     62 
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Test results are inconsistent: 

 

The conditional distribution P(B|CDLM) 

= 

 Either BCL,BD,BM or BCL,BLM,BD 

 

The evidence suggesting that L modifies the effect of M is weak.  
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Yet another problem: 
 

The (partial) gamma coefficient is a non-parametric measure of association between 

ordinal variables. Gamma coefficients calculated in different strata can therefore not 

be expected to be the same even though there is no higher order interaction according 

to the loglinear model2. 

 

Gamma coefficients may therefore be heterogeneous even though the model is a pure 2-

factor interaction model.  

 

The test of BC,BD,BL,BM against BCL,BD,BM suggests that this is not what have 

happened here: 

LR = 34.1 df = 7, p = 0.000 

                                                 
2 Except when the gamma coefficient measures association between two dichotomous variables 
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Loglinear analysis of non-parametric association. 
 

Gamma coefficients may be calculated in fitted instead of observed tables. 

 

Partial gamma coefficients measuring association between SRH (B) and Tiredness (C)  

in strata defined by Problems (L) 

 

Problems Observed

γ 

Fitted γ under BCL, 

BD,BM 

Fitted γ under BC,BL, 

BD,BM 

No -0.849 -0.841 (.074) -0.660 (.117) 

Few -0.846 -0.804 (.104) -0.697 (.148) 

many +0.271 +0.368 (.298) -0.700 (.203) 

χ2 test of 

obs=fit 

 χ2 = 0.3 

df = 3, p = 0.97 

χ2 = 26.5 

df = 3, p = 0.000 
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Partial gamma coefficients measuring association between SRH (B) and Social Class 

(M) in strata defined by Problems (L) 

 

Problems Observed

γ 

Fitted γ under BCL, BD,BM

No   +0.232 +0.251 (.107)

Few   +0.081 +0.244 (.173)

many   +0.552 +0.302 (.215)

Very many -0.500 +0.271 (.643) 

Test of obs=fit  χ2 = 3.7 

df = 4, p = 0.45 

  

The evidence of heterogeneous gamma coefficients is not convincing 

 
 


	Graphical models for symmetrical relationships
	
	Graphs defining graphical models are called independence graphs, interaction graphs or Markov graphs.


	Graphical regression models
	
	
	Yi - Yj | Y1,..,Yi-1,Yi+1,..,Yj-1,Yj+1, .,Yr,X1,..,Xs




